Prostar Solar Energy

Home > Blog

Deep Cycle Batteries: How to Keep Them Alive for Years and Years

2017-06-01 23:21:06 Prostar Solar Energy Read

Deep Cycle Batteries: How to Keep Them Alive for Years and Years

Lead-acid deep cycle batteries are often considered to be the "weak link" in renewable energy systems. However, today's renewable energy batteries are better than ever, and so are the devices that regulate and protect them. Battery failures are rarely the fault of the batteries themselves! Follow these guidelines to avoid the vast majority of all battery problems.

Size a battery bank and PV array properly

A battery bank should be sized (as a minimum) to a capacity of 5 days of load. Energy use in most home power systems increases over time, so consider sizing larger than that. Why? After 1 year of service, it is NOT advisable to enlarge a battery bank by adding new batteries to it, because batteries' voltage response changes with age. Stray currents flow, causing losses and failure to equalize. A PV array, if it is the primary energy source, should be sized to produce (on average) 30% more energy than the load requires. This compensates for battery losses and for less-than-average charging conditions. Luckily, a PV array can be expanded at any time.

Buy high-quality batteries, selected for your needs You get what you pay for! Good deep-cycle batteries can be expected to last for 5 to 15 years, and sometimes more. Cheap batteries can give you trouble in half that time. Buy from a reputable source.

Avoid multiple parallel strings

The ideal battery bank is the simplest, consisting of a single series of cells that are sized for the job. Higher capacity batteries tend to have thicker plates, and therefore greater longevity. Having fewer cells will reduce the chance of randomly occurring defects, and reduces maintenance. Suppose for example, that you require a 700 Amp-Hour bank. You can approximate that by using 3 parallel strings of golf-cart batteries (220 AH), or 2 strings of the larger L-16 style batteries (350 AH) or a single string of larger, industrial batteries.

Under no circumstances is it advisable to install more than three parallel battery strings. The resulting bank will tend to lose its equalization, resulting in accelerated failure of any weak cells. Weak cells will be difficult to detect because they will "steal" from the surrounding cells, and the system will suffer as a whole and will cost you more in the long run.

Here are some precautions to take when wiring two or more strings of batteries in series-parallel. The goal is to maintain all of the cells at an equal state of charge. Cells that tend to receive less charge are likely to fail prematurely. This can take years off of the effective life of the battery bank. A fraction of an ohm of added resistance in one battery string can reduce the life of the entire string.

(1) Connect the two main cables to opposite corners of the battery bank, and maintain symmetry in wire size and lengths. This will help to distribute current evenly through the bank.

batteries in series-parallel

(2) Arrange batteries to maintain even temperature distribution throughout the bank. Avoid uneven exposure to heat sources. Leave at least 1/2 inch of air space around each battery, to promote even cooling.

(3) Apply a finish charge at least every 3 weeks (bring every cell to 100% charge).

Prevent corrosion 

In flooded battery installations, corrosion of terminals and cables is an ugly nuisance that causes resistance and potential hazards. Once corrosion gets hold, it is hard to stop. The good news -- it is easy to prevent! Apply a non-hardening sealant to all of the metal parts of the terminals BEFORE ASSEMBLY. Completely coat the battery terminals, the wire lugs, and the nuts and bolts individually. A sealant applied after assembly will not reach all around every junction. Voids will remain, acid spatter will enter, and corrosion will begin as soon as your installation is finished.

Special compounds are sold to protect terminals, but you can have perfectly good results using common petroleum jelly (Vaseline). It will not inhibit electrical contact. Apply a thin coating with your fingers, and it won't look sloppy. If wire is exposed at a terminal lug, it should be sealed airtight, using either adhesive-lined heat-shrink tubing or submersible rubber splice tape. You can also seal an end of stranded wire by warming it gently, and dipping it in the petroleum jelly to liquefy, and wick it into the wire.

It also helps to put the batteries over a floor drain, or in a space without a floor, so that they can be rinsed with water easily. Washing the battery tops (about twice per year) will remove accumulated moisture (acid spatter) and dust. This will further reduce corrosion, and will prevent stray currents from stealing energy. Batteries that we have protected by these measures show very little corrosion, even after 10 years without terminal cleaning.

Moderate the temperature

Batteries lose approximately 25% of their capacity at a temperature of 30°F (compared to a baseline of 77°F). At higher temperatures, they deteriorate faster. Thus, it is desirable to protect them from temperature extremes. If no thermally-stable structure is available, consider an earth-sheltered enclosure. Where low temperature cannot be avoided, get a larger battery bank to make up for the loss of capacity in the winter. Avoid direct radiant heat sources that will cause some batteries to get warmer than others.

Tag:   deep cycle batteries